Deep Learning

16 Self-Attention \& Transformers

Dr. Konda Reddy Mopuri
Dept. of AI, IIT Hyderabad
Jan-May 2023

Motivation

(1) Why does one need to think beyond LSTMs?

Motivation

(1) Why does one need to think beyond LSTMs?
(2) Sequential processing doesn't allow parallelization

- Path length $=\mathbb{O}(n)$
- RNNs need at most $\mathbb{O}(n)$ sequential computations to access each element

Motivation

(1) Despite the LSTM/GRU, RNNs need attention to deal with long-range dependencies

Motivation

(1) Despite the LSTM/GRU, RNNs need attention to deal with long-range dependencies
(2) Since attention enables accesses to any state, do we need RNNs?

Transformers

(1) Introduced by Vaswani et al.

NeurIPS 2017

Transformers

(1) Introduced by Vaswani et al.

NeurIPS 2017
(2) Sequnce to sequence modelling without RNNs

Transformers

(1) Introduced by Vaswani et al. NeurIPS 2017
(2) Sequnce to sequence modelling without RNNs
(3) Transformer model is built on self-attention (no recurrent architectures!)

Transformers

Credits: Jay Alammar

Transformers

Credits: Jay Alammar

Credits: Jay Alammar

Transformers

Credits: Jay Alammar

Transformers

Credits: Jay Alammar
(1) Encoding module has a stack of encoders
(2) Same structure different parameters

Transformers

Credits: Jay Alammar
(1) Encoding module has a stack of encoders
(2) Same structure different parameters
(3) Similarly the decoding module (same number of components in the stack as encoder)

Transformers

(1) Encoder first has a self-attention layer

Credits: Jay Alammar

Transformers

(1) Encoder first has a self-attention layer
(2) Looks at the other words while encoding a specific word

Credits: Jay Alammar

Transformers

(1) Encoder first has a self-attention layer
(2) Looks at the other words while encoding a specific word
(3) Next a (same) feed-forward NN is applied at all positions

Credits: Jay Alammar

Transformers

(1) Decoder also has both the layers

Credits: Jay Alammar

Transformers

(1) Decoder also has both the layers
(2) But, in the middle it has an encoder-decoder attention layer

Transformers-Encoding

(1) Start with turning each word into a vector at the bottom-most encoder

suis

étudiant

Credits: Jay Alammar

Transformers-Encoding

(1) Start with turning each word into a vector at the bottom-most encoder
(2) Others receive a list of vectors from the encoder immediately below

suis

étudiant

Credits: Jay Alammar

Transformers-Encoding

(1) Each word flows through the two layers of the encoder through its own path

Credits: Jay Alammar

Transformers-Encoding

(1) Each word flows through the two layers of the encoder through its own path
(2) Self-attention layer has dependencies among them, however, the path length is $\mathbb{O}(1)$

Credits: Jay Alammar

Transformers-Encoding

Credits: Jay Alammar

Self-Attention

(1) The animal didn't cross the street because it was too tired
(2) The animal didn't cross the street because it was too wide

Self-Attention

(1) The animal didn't cross the street because it was too tired
(2) The animal didn't cross the street because it was too wide
(3) What does 'it' refer to?

Self-Attention

(1) The animal didn't cross the street because it was too tired
(2) The animal didn't cross the street because it was too wide
(3) What does 'it' refer to?
(4) Easy for humans, but not so much for the traditional Seq2Seq models

Self-Attention

(1) As the model processes each word, self-attention attends other positions in the i / p sequence to encoder better

Credits: Jay Alammar

Self-Attention

(1) As the model processes each word, self-attention attends other positions in the i / p sequence to encoder better
(2) Unlike RNNs, here we don't keep hidden states from previous positions!

Credits: Jay Alammar

Self-Attention

Input

Embedding

Queries

Keys

Values

Thinking

\square

Machines

W^{K}

Credits: Jay Alammar

Self-Attention

Credits: Jay Alammar

Self-Attention

Self-Attention

Credits: Jay Alammar

Multi-headed Self-Attention

Credits: Jay Alammar

Multi-headed Self-Attention

Credits: Jay Alammar

Multi-headed Self-Attention

(1) Expands the model's ability to focus on different relevant positions in the i / p

Multi-headed Self-Attention

(1) Expands the model's ability to focus on different relevant positions in the i / p
(2) Enables different 'representational subspace'

Multi-headed Self-Attention

1) Concatenate all the attention heads

2) The result would be the 2 matrix that captures information
from all the attention heads. We can send this forward to the FFNN

3) Multiply with a weight matrix W° that was trained folntly with the model

X

Credits: Jay Alammar

Multi-headed Self-Attention

Credits: Jay Alammar

Positional Encoding

(1) Unlike RNN and CNN encoders, attention encoder outputs don't depend on the order

Positional Encoding

(1) Unlike RNN and CNN encoders, attention encoder outputs don't depend on the order
(2) However, order the sequence conveys vital information in some applications

Positional Encoding

(1) Unlike RNN and CNN encoders, attention encoder outputs don't depend on the order
(2) However, order the sequence conveys vital information in some applications
(3) Solution: Add positional information of the i / p words into their embedding vectors

Positional Encoding

Credits: Jay Alammar

Residuals in the Encoder

Credits: Jay Alammar

Residuals in the Encoder

Tranformer-Decoder

Credits: Jay Alammar

Transformer-Decoder

(1) Self-attention here works in a slightly different way \rightarrow masks the future positions

Transformer-Decoder

(1) Self-attention here works in a slightly different way \rightarrow masks the future positions
(2) Uses the top encoder's K and V vectors for its' encoder-decoder attention

Transformer-Decoder

(1) Self-attention here works in a slightly different way \rightarrow masks the future positions
(2) Uses the top encoder's K and V vectors for its' encoder-decoder attention
(3) Encoder-decoder attention layer borrows the queries from the layer below it

Transformer-Decoder

Transformer-Decoder

Final o/p

Which word in our vocabulary is associated with this index?
am

Credits: Jay Alammar

